0
Shopping cart
There are no products in your cart.
LOGIN | REGISTER    

MoBiTec Vector Systems Citations

Expression Systems

  • Atanassov I, Stefanova K, Tomova I, Kamburova M. Seamless GFP and GFP-Amylase Cloning in Gateway Shuttle Vector, Expression of the Recombinant Proteins inE. ColiandBacillus Megateriumand Assessment of the GFP-Amylase Thermostability. Biotechnology & Biotechnological Equipment. 2013;27(5):4172-4180. doi:10.5504/bbeq.2013.0079
  • Chumbler NM, Farrow MA, Lapierre LA, et al. Clostridium difficile Toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism [published correction appears in PLoS Pathog. 2012 Dec;8(12). doi: 10.1371/annotation/f9017013-88c8-44db-818b-08b9322f3814. Haslam, David [corrected to Haslam, David B]]. PLoS Pathog. 2012;8(12):e1003072. doi:10.1371/journal.ppat.1003072
  • Cowardin CA, Jackman BM, Noor Z, Burgess SL, Feig AL, Petri WA Jr. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A. Infect Immun. 2016;84(8):2317-2323. Published 2016 Jul 21. doi:10.1128/IAI.00327-16
  • Detman A, Chojnacka A, Mielecki D, Błaszczyk M, Sikora A. Inhibition of hydrogen-yielding dark fermentation by ascomycetous yeasts. Int J Hydrogen Energy. 2018;43(24):10967-10979. doi:10.1016/j.ijhydene.2018.05.004
  • Doyle DA, DeAngelis PL, Ballard JD. CSPG4-dependent cytotoxicity for C. difficile TcdB is influenced by extracellular calcium and chondroitin sulfate. mSphere. 2024. doi: 10.1128/msphere.00094-24
  • D'Urzo N, Martinelli M, Nenci C, Brettoni C, Telford JL, Maione D. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter. Microb Cell Fact. 2013;12:12. Published 2013 Feb 1. doi:10.1186/1475-2859-12-12
  • Fühner V, Heine PA, Helmsing S, et al. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficileFront Microbiol. 2018;9:2908. Published 2018 Dec 6. doi:10.3389/fmicb.2018.02908
  • Härtig E, Frädrich C, Behringer M, Hartmann A, Neumann-Schaal M, Jahn D. Functional definition of the two effector binding sites, the oligomerization and DNA binding domains of the Bacillus subtilis LysR-type transcriptional regulator AlsR. Mol Microbiol. 2018;109(6):845-864. doi:10.1111/mmi.14089
  • Kinsolving J, Bous J, Kozielewicz P, et al. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD. Cell Reports. 2024; 2 (43). doi: 10.1016/j.celrep.2024.113727
  • Knobloch D, Ostermann K, Rödel G. Production, secretion, and cell surface display of recombinant Sporosarcina ureae S-layer fusion proteins in Bacillus megaterium. Appl Environ Microbiol. 2012;78(2):560-567. doi:10.1128/AEM.06127-11
  • Lopes W, Deolindo P, Andrade de Souza Costa A, et al. Optimization of a medium composition for the heterologous production of Alcaligenes faecalis penicillin G acylase in Bacillus megaterium. Protein Expression and Purification. 2023; (210). doi: 10.1016/j.pep.2023.106327
  • Lu YP, Zhang C, Lv FX, Bie XM, Lu ZX. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Lett Appl Microbiol. 2012;55(1):9-14. doi:10.1111/j.1472-765X.2012.03249.x
  • Manse JS, Baldwin MR. Binding and entry of Clostridium difficile toxin B is mediated by multiple domains. FEBS Lett. 2015;589(24 Pt B):3945-3951. doi:10.1016/j.febslet.2015.11.017
  • Nasser H, Eikmanns BJ, Tolba MM, et al. The Superiority of Bacillus megaterium over Escherichia coli as a Recombinant Bacterial Host for Hyaluronic Acid Production. Microorganisms. 2022; 10(12):2347. doi: doi.org/10.3390/microorganisms10122347
  • Ocaña JS, et al. Nonsteroidal anti-inflammatory drugs sensitize epithelial cells to Clostridioides difficile toxin–mediated mitochondrial damage.Sci. Adv. 2023; (9). doi: 10.1126/sciadv.adh5552
  • Palma L, Ruiz de Escudero I, Mañeru-Oria F, et al. UV protection and insecticidal activity of microencapsulated Vip3Ag4 protein in Bacillus megaterium. Toxicon. 2024; (247). doi: 10.1016/j.toxicon.2024.107807
  • Perera VR, Lapek JD Jr, Newton GL, Gonzalez DJ, Pogliano K. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS One. 2018;13(2):e0192977. Published 2018 Feb 16. doi:10.1371/journal.pone.0192977
  • Pruitt RN, Chumbler NM, Rutherford SA, et al. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. J Biol Chem. 2012;287(11):8013-8020. doi:10.1074/jbc.M111.298414
  • Tian S, Xiong, X, Zeng, J, et al. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants   Nat Commun 2022; (13) 6786. doi: doi.org/ 10.1038/s41467-022-33964-9
  • Williams A, Gedeon K, Vaidyanathan D et al. Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2. Microb Cell Fact. 2019;18(1). doi:10.1186/s12934-019-1187-9
  • Yi Z, Su X, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One. 2013;8(12):e84172. Published 2013 Dec 16. doi:10.1371/journal.pone.0084172
  • Babar TK, Glare TR, Hampton JG , et al. Linocin M18 protein from the insect pathogenic bacterium Brevibacillus laterosporus isolates. Appl Microbiol Biotechnol. 2023. doi: 10.1007/s00253-023-12563-8
  • Cho G, Lee J, Kim J, et al. Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification. Nucleic Acids Research. 2023. doi: doi.org/10.1093/nar/gkad048
  • Dimitrova-Paternoga, L, Kasvandik S, Beckert B, et al. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature. 2024. doi: 10.1038/s41586-024-07027-6
  • Gilmour KA, Ghimire PS, Wright J. et al. Microbially induced calcium carbonate precipitation through CO2 sequestration via an engineered Bacillus subtilis. Microb Cell Fact. 2024; (23)168. doi: 10.1186/s12934-024-02437-7
  • Gottimukkala C, Ma C, Netter H, Noronha S, Coppel R. Immunogenicity of Malaria Vaccine Candidate - Plasmodium Falciparum Merozoite Surface Protein 5 (PfMSP5) Expressed in Bacillus subtilis. APCBEE Procedia. 2014;9:113-119. doi:10.1016/j.apcbee.2014.01.021
  • Hess BM, Xue J, Markillie LM, et al. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics. PLoS One. 2013;8(6):e66104. Published 2013 Jun 19. doi:10.1371/journal.pone.0066104
  • Ilk, N, Schumi CT, Bohle B. et al. Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy. Microb Cell Fact. 2011; (10)6. doi: 10.1186/1475-2859-10-6
  • Jeong H, Jeong DE, Park SH, Kim SJ, Choi SK. Complete Genome Sequence of Bacillus subtilis Strain WB800N, an Extracellular Protease-Deficient Derivative of Strain 168. Microbiol Resour Announc. 2018;7(18):e01380-18. Published 2018 Nov 8. doi:10.1128/MRA.01380-18
  • Jiang Z, Niu T, Lv X, et al. Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus subtilis. Appl Environ Microbiol. 2019;85(17):e01076-19. Published 2019 Aug 14. doi:10.1128/AEM.01076-19
  • Lu YP, Zhang C, Lv FX, Bie XM, Lu ZX. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Lett Appl Microbiol. 2012;55(1):9-14. doi:10.1111/j.1472-765X.2012.03249.x
  • Minh Tran D, Phuong Phan T, Ngoc Doan T, Tran T, Schumann W, Nguyen H. Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnology Reports. 2020:e00540. doi:10.1016/j.btre.2020.e00540
  • Mordukhova EA, Pan JG. Construction of a Bacillus subtilis and Escherichia coli shuttle vector harboring the fabL gene as a triclosan selection marker. Heliyon. 2020;6(5):e03891. Published 2020 May 13. doi:10.1016/j.heliyon.2020.e03891
  • Price MA, Cruz R, Baxter S, Escalettes F, Rosser SJ. CRISPR-Cas9 In Situ engineering of subtilisin E in Bacillus subtilis. PLoS One. 2019;14(1):e0210121. Published 2019 Jan 7. doi:10.1371/journal.pone.0210121
  • Välimets, S, Pedetti, P, Virginia L.J. et al. Secretory expression of recombinant small laccase genes in Gram-positive bacteria. Microb Cell Fact. 2023; 22(72). doi: 10.1186/s12934-023-02075-5
  • Vanden Broeck A, Van der Heiden E, Sauvage E, Dauvin M, Joris B, Duez C. A Lysine Cluster in Domain II of Bacillus subtilis PBP4a Plays a Role in the Membrane Attachment of This C1-PBP. PLoS One. 2015;10(10):e0140082. Published 2015 Oct 13. doi:10.1371/journal.pone.0140082
  • Arshad NF, Nordin FJ, Foong LC, et al. Engineering receptor-binding domain and heptad repeat domains towards the development of multi-epitopes oral vaccines against SARS-CoV-2 variants. PLOS ONE. 2024; 19(8): e0306111. doi: 10.1371/journal.pone.0306111
  • Borrero J, Chen Y, Dunny GM, Kaznessis YN. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth Biol. 2015;4(3):299-306. doi:10.1021/sb500090b
  • Ciaćma K, Więckiewicz J, Kędracka-Krok S, et al. Secretion of tumoricidal human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by recombinant Lactococcus lactis: optimization of in vitro synthesis conditions. Microb Cell Fact. 2018;17(1):177. Published 2018 Nov 16. doi:10.1186/s12934-018-1028-2
  • Craig K, Dai X, Li A, et al. A Lactic Acid Bacteria (LAB)-Based Vaccine Candidate for Human Norovirus. Viruses. 2019;11(3):213. Published 2019 Mar 2. doi:10.3390/v11030213
  • Dolatabadi S, Falsaf T, Mahmoudi M. Lactococcus lactis as an oral vector for cloning of heat shock protein A from Helicobacter pylori. International Journal of Biosciences (IJB). 2015;6(3):410-415. doi:10.12692/ijb/6.3.410-415
  • García PC, Paillavil BA, Scioscia N, et al. Clinical and microbiological response of mice to intranasal inoculation with Lactococcus lactis expressing Group A Streptococcus antigens, to be used as an anti-streptococcal vaccine. Microbiol Immunol. 2018;62(11):711-719. doi:10.1111/1348-0421.12657
  • Gifre-Renom L, Seras-Franzoso J, Rafael D, et al. The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics. 2020;12(2):157. Published 2020 Feb 15. doi:10.3390/pharmaceutics12020157
  • Lei H, Peng X, Ouyang J, et al. Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res. 2015;11:85. Published 2015 Apr 2. doi:10.1186/s12917-015-0399-4
  • Li L, Lee SJ, Yuan QP, Im WT, Kim SC, Han NS. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactisJ Ginseng Res. 2018;42(4):412-418. doi:10.1016/j.jgr.2017.04.007
  • Lim PY, Tan LL, Ow DS, Wong FT. A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact. 2017;16(1):221. Published 2017 Dec 5. doi:10.1186/s12934-017-0836-0
  • Liu GW, Pickett MJ, Kuosmanen, JLP, et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. Nat. Mater. 2024. doi: 10.1038/s41563-024-01811-5
  • Markakiou S, Rute Neves A, Zeidan A, et al. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus. Microbiology Spectrum. 2023. doi: abs/10.1128/spectrum.00668-23
  • Namai F, Shigemori S, Ogita T, Sato T, Shimosato T. Microbial therapeutics for acute colitis based on genetically modified Lactococcus lactis hypersecreting IL-1Ra in mice [published online ahead of print, 2020 Sep 28]. Exp Mol Med. 2020;1-10. doi:10.1038/s12276-020-00507-5
  • Namai F, Sumiya S, Nomura N, et al. Development of fluorescence-labeled antibody for immune checkpoint inhibitor using engineered probiotics. AMB Expr. 2023; 13(4). doi: doi.org/10.1186/s13568-023-01509-y
  • Ogaugwu C, Cheng Q, Fieck A, Hurwitz I, Durvasula R. Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnology Reports. 2018;17:86-92. doi:10.1016/j.btre.2017.11.010
  • Shigemori S, Watanabe T, Kudoh K, et al. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Fact. 2015;14:189. Published 2015 Nov 25. doi:10.1186/s12934-015-0378-2
  • Sato T., & Shimosato T. Intratracheally Therapeutic Option for COPD: A Potential Usage of the Therapeutic Microbe for Delivering Specific Protein to the Lungs. IntechOpen. 2022. doi: doi.org/10.5772/intechopen.106491
  • Shao J, Xin K, Qian Z, et al. Combining iRGD with HuFOLactis enhances antitumor potency by facilitating immune cell infiltration and activation. Human Vaccines & Immunotherapeutics. 2024; 20(1). doi: 10.1080/21645515.2024.2375825
  • Tagliavia M, Nicosia A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms. 2019;7(5):116. Published 2019 Apr 27. doi:10.3390/microorganisms7050116
  • Tanhaieian A, Sekhavati MH, Ahmadi FS, Mamarabadi M. Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: Its safety and molecular modeling evaluation. Microb Pathog. 2018;125:51-59. doi:10.1016/j.micpath.2018.09.016
  • Van Zyl WF, Dicks LMT, Deane SM. Development of a novel selection/counter-selection system for chromosomal gene integrations and deletions in lactic acid bacteria. BMC Mol Biol. 2019;20(1):10. Published 2019 Mar 29. doi:10.1186/s12867-019-0127-x
  • Vasiee A, Falah F, Sankian M, Tabatabaei-Yazdi F, Mortazavi S. Oral Immunotherapy Using Probiotic Ice Cream Containing Recombinant Food-Grade Lactococcus lactis Which Inhibited Allergic Responses in a BALB/c Mouse Model. J Immunol Res. 2020;2020. doi:10.1155/2020/2635230
  • Vest KE, Wang J, Gammon MG, et al. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae. Open Biol. 2016;6(1):150223. doi:10.1098/rsob.150223
  • Wang M, Fu T, Hao J, et al. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int J Biol Macromol. 2020;160:736-740. doi:10.1016/j.ijbiomac.2020.05.239
  • Wang W, Song Y, Liu L, et al. Neutralizing-antibody-mediated protection of chickens against infectious bursal disease via one-time vaccination with inactivated recombinant Lactococcus lactis expressing a fusion protein constructed from the RCK protein of Salmonella enterica and VP2 of infectious bursal disease virus. Microb Cell Fact. 2019;18(1):21. Published 2019 Jan 31. doi:10.1186/s12934-019-1061-9
  • Xu C, Qiao L, Ma L, et al. Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. Front Microbiol. 2019;10:1632. Published 2019 Jul 26. doi:10.3389/fmicb.2019.01632
  • Yoda M, Takase S, Suzuki K, et al. Development of engineered IL-36γ-hypersecreting Lactococcus lactis to improve the intestinal environment. World J Microbiol Biotechnol. 2024;40 363. doi: 10.1007/s11274-024-04157-x
  • Yu Hsuan How, Michelle Yee Mun Teo, Lionel Lian Aun In, et al. Development of fermented milk using food-grade recombinant Lactococcus lactis NZ3900.  NFS Journal . 2022;28:1-14. doi: 10.1016/j.nfs.2022.07.001
  • Yurina V, Adianingsih OR, Widodo N, et al. Oral and intranasal immunization with food-grade recombinant Lactococcus lactis expressing high conserved region of SARS-CoV-2 spike protein triggers mice’s immunity responses. Vaccine: X. 2023;13. doi:10.1016/j.jvacx.2023.100265
  • Zhai K, Zhang Z, Liu X et al. Mucosal immune responses induced by oral administration of recombinant Lactococcus lactis expressing the S1 protein of PDCoV. Virology. 2023;578:180-189. doi: doi.org/10.1016/j.virol.2022.12.010
  • Zhang P, Yang T, Sun Y, et al. Development and Immunoprotection of Bacterium-like Particle Vaccine against Infectious Bronchitis in Chickens.Vaccines. 2023; 11(8). doi: 10.3390/vaccines11081292
  • Ahlers-Dannen KE, Yang J, Spicer MM, et al. A splice acceptor variant in RGS6 associated with intellectual disability, microcephaly, and cataracts disproportionately promotes expression of a subset of RGS6 isoforms. J Hum Genet. 2024. doi: 10.1038/s10038-024-01220-1
  • Akiyama K, Noguchi J, Hirose M, et al. A mutation in the nuclear pore complex gene Tmem48 causes gametogenesis defects in skeletal fusions with sterility (sks) mice. J Biol Chem. 2013;288(44):31830-31841. doi:10.1074/jbc.M113.492306
  • Banday A, Onabajo O, Lin S et al. Isoform-specific characterization implicates alternative splicing in APOBEC3B as a mechanism restricting APOBEC-mediated mutagenesis. 2020. doi:10.1101/2020.09.27.315689
  • Banday, A.R., Stanifer, M.L., Florez-Vargas, O. et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet . Published 2022 Jul 14. doi:10.1038/s41588-022-01113-z
  • Belaya K, Rodríguez Cruz PM, Liu WW, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(Pt 9):2493-2504. doi:10.1093/brain/awv185
  • Booth KT, Askew JW, Talebizadeh Z, et al. Splice-altering variant in COL11A1 as a cause of nonsyndromic hearing loss DFNA37. Genet Med. 2019;21(4):948-954. doi:10.1038/s41436-018-0285-0
  • Canavati C, Sherill-Rofe D, Kamal L, et al. Using multi-scale genomics to associate poorly annotated genes with rare diseases. Genome Med. 2023; 4(16). doi: 10.1186/s13073-023-01276-2
  • Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267-1279. doi:10.1182/blood-2005-10-007252
  • Chan L, Smith C, Read J, et al. RF33 | PSAT69 A Combined Candidate Gene/Whole Exome Sequencing Approach Permits a Rapid Genetic Diagnosis for >81% Individuals with Primary Adrenal Insufficiency. Journal of the Endocrine Society. 2022; 6(1): A140-A141. doi: doi: 10.1210/jendso/bvac150.286
  • Chang H, Zhang X, Xu K, et al. Phenotype-Based Genetic Analysis Reveals Missing Heritability of KIF11-Related Retinopathy: Clinical and Genetic Findings. Genes. 2023; 14(1):212. doi: doi.org/10.3390/genes14010212
  • Chen Y, Huang L, Jiao X, Riazuddin S, Riazuddin S, Fielding Hetmancik J. A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics. 2018;12(1). doi:10.1186/s40246-018-0165-3
  • Cottrell E, Maharaj A, Chatterjee S et al. A novel GHR pseudoexon mutation causing frameshift and severe postnatal growth failure. Endocrine Abstracts. 2018. doi:10.1530/endoabs.58.oc5.7
  • Delestrain C, Simon S, Aissat A, et al. Deciphering the mechanism of Q145H SFTPC mutation unmasks a splicing defect and explains the severity of the phenotype. Eur J Hum Genet. 2017;25(6):779-782. doi:10.1038/ejhg.2017.36
  • Hector RD, Kalscheuer VM, Hennig F, et al. CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. 2017;3(6):e200. Published 2017 Dec 15. doi:10.1212/NXG.0000000000000200
  • Grombirikova H, Bily V, Soucek P, et al. Systematic Approach Revealed SERPING1 Splicing-Affecting Variants to be Highly Represented in the Czech National HAE Cohort. J Clin Immunol. 2023. doi: 10.1007/s10875-023-01565-w
  • Hinzpeter A, Aissat A, Sondo E, et al. Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 2010;6(10):e1001153. Published 2010 Oct 7. doi:10.1371/journal.pgen.1001153
  • Kohmoto T, Naruto T, Kobayashi H, et al. A novel COL11A1 mutation affecting splicing in a patient with Stickler syndrome. Hum Genome Var. 2015;2:15043. Published 2015 Nov 12. doi:10.1038/hgv.2015.43
  • Kramárek M, Souček P, Réblová K, et al. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Nucleic Acids Research. 2024.   doi: 10.1093/nar/gkae147
  • Maharaj A, Buonocore F, Meimaridou E, et al. Predicted Benign and Synonymous Variants in CYP11A1 Cause Primary Adrenal Insufficiency Through Missplicing. J Endocr Soc. 2018;3(1):201-221. Published 2018 Oct 30. doi:10.1210/js.2018-00130
  • Maharaj A, Theodorou D, Banerjee II, Metherell LA, Prasad R, Wallace D. A Sphingosine-1-Phosphate Lyase Mutation Associated With Congenital Nephrotic Syndrome and Multiple Endocrinopathy. Front Pediatr. 2020;8:151. Published 2020 Apr 8. doi:10.3389/fped.2020.00151
  • Maharaj AV, Ishida M, Rybak A, et al. QSOX2 Deficiency-induced short stature, gastrointestinal dysmotility and immune dysfunction. Nat Commun. 2024; (15) 8420. doi: 10.1038/s41467-024-52587-w
  • Muñoz-Pujol G, Ortigoza-Escobar JD, Paredes-Fuentes AJ, et al. Leigh syndrome is the main clinical characteristic of PTCD3 deficiency. Brain Pathology. 2022. doi: doi.org/10.1111/bpa.13134
  • Mura-Escorche G, Perdomo-Ramírez A, Ramos-Trujillo E, et al. Characterization of pre-mRNA Splicing Defects Caused by CLCN5 and OCRL Mutations and Identification of Novel Variants Associated with Dent Disease. Biomedicines. 2023; 11(11):3082. doi: 10.3390/biomedicines11113082
  • Naruto T, Okamoto N, Masuda K, et al. Deep intronic GPR143 mutation in a Japanese family with ocular albinism. Sci Rep. 2015;5:11334. Published 2015 Jun 10. doi:10.1038/srep11334
  • Oeffner F, Martinez F, Schaffer J, et al. Intronic mutations affecting splicing of MBTPS2 cause ichthyosis follicularis, alopecia and photophobia (IFAP) syndrome. Exp Dermatol. 2011;20(5):447-449. doi:10.1111/j.1600-0625.2010.01238.x
  • Perdomo-Ramirez A, de Armas-Ortiz M, Ramos-Trujillo E, Suarez-Artiles L, Claverie-Martin F. Exonic CLDN16 mutations associated with familial hypomagnesemia with hypercalciuria and nephrocalcinosis can induce deleterious mRNA alterations. BMC Med Genet. 2019;20(1):6. Published 2019 Jan 8. doi:10.1186/s12881-018-0713-7
  • Shi J, Tian L, Sun T, et al. Comprehensive Genetic Analysis Unraveled the Missing Heritability and a Founder Variant of BEST1 in a Chinese Cohort With Autosomal Recessive Bestrophinopathy. Invest Ophthalmol Vis Sci. 2023;64(12):37. doi: 10.1167/iovs.64.12.37
  • Stockley J, Nisar SP, Leo VC, et al. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease. PLoS One. 2015;10(12):e0143913. Published 2015 Dec 2. doi:10.1371/journal.pone.0143913
  • Suarez-Artiles L, Perdomo-Ramirez A, Ramos-Trujillo E, Claverie-Martin F. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease. Genes (Basel). 2018;9(1):15. Published 2018 Jan 4. doi:10.3390/genes9010015
  • Sylvester B, Brindopke F, Suzuki A, et al. A Synonymous Exonic Splice Silencer Variant in IRF6 as a Novel and Cryptic Cause of Non-Syndromic Cleft Lip and Palate. Genes (Basel). 2020;11(8):903. Published 2020 Aug 7. doi:10.3390/genes11080903
  • Vemula SR, Xiao J, Zhao Y, et al. A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia. Mol Genet Genomic Med. 2014;2(3):261-272. doi:10.1002/mgg3.67
  • Wei WJ, Mu SR, Heiner M, et al. YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts. Nucleic Acids Res. 2012;40(17):8622-8636. doi:10.1093/nar/gks579
  • Windpassinger C, Piard J, Bonnard C, et al. CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. Am J Hum Genet. 2017;101(3):391-403. doi:10.1016/j.ajhg.2017.08.003
  • Xiao MS, Damodaran AP, Kumari B, et al. Genome-scale exon perturbation screens uncover exons critical for cell fitness. Molecular Cell. 2024; 84(13). doi: 10.1016/j.molcel.2024.05.024
  • Zhang X, Xie Y, Xu K, et al. Comprehensive Genetic Analysis Unraveled the Missing Heritability in a Chinese Cohort With Wolfram Syndrome 1: Clinical and Genetic Findings. Invest. Ophthalmol. Vis. Sci. . 2022;63(10):9 doi: 10.1167/iovs.63.10.9
  • Schell MA, Ulrich RL, Ribot WJ, et al. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 2007;64(6):1466-1485. doi:10.1111/j.1365-2958.2007.05734.x
  • Schofield DA, Westwater C, Dolan JW, Schmidt MG, Norris JS. Controlled expression in Klebsiella pneumoniae and Shigella flexneri using a bacteriophage P1-derived C1-regulated promoter system. J Bacteriol. 2001;183(23):6947-6950. doi:10.1128/JB.183.23.6947-6950.2001
  • Wand ME, Müller CM, Titball RW, Michell SL. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011;11(1):11. Published 2011 Jan 17. doi:10.1186/1471-2180-11-11
  • Westwater C, Schofield DA, Schmidt MG, Norris JS, Dolan JW. Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria. Microbiology (Reading). 2002;148(Pt 4):943-950. doi:10.1099/00221287-148-4-943

Recently Viewed Products